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ABSTRACT: The observation error covariance partially controls the weight assigned to an observation during data assimila-
tion (DA). True observation error statistics are rarely known and likely vary depending on the meteorological state. However,
operational DA systems often apply static methods that assign constant observation errors across a dataset. Previous studies
show that these methods can degrade forecast quality when assimilating ground-based remote sensing datasets. To improve the
impact of assimilating such observations, we propose two novel methods for estimating the observation error variance for high-
frequency thermodynamic profilers. These methods include an adaptive observation error inflation technique and the Desroz-
iers method that directly estimates the observation error variances using paired innovation and analysis residuals. Each method
is compared for a nocturnal mesoscale convective system (MCS) observed during the Plains Elevated Convection at Night
(PECAN) experiment. In general, we find that these novel methods better represent the large variability of observation error
statistics for high-frequency profiles collected by Atmospheric Emitted Radiance Interferometers (AERIs). When assimilating
AERIs by statically inflating retrieval error variances, the trailing stratiform region of the MCS is degraded compared to a base-
line simulation with no AERI data assimilated. Assimilating the AERIs using the adaptive inflation or Desroziers method re-
sults in better maintenance of the trailing stratiform region and additional suppression of spurious convection. The forecast
improvements from these novel methods are primarily linked to increased error variances for some moisture retrievals. These
results indicate the importance of accurately estimating observation error statistics for convective-scale DA and suggest that ac-
counting for flow dependence can improve the impacts from assimilating remote sensing datasets.

KEYWORDS: Remote sensing; Data assimilation; Numerical weather prediction/forecasting

1. Introduction

From a Bayesian perspective, data assimilation (DA) in-
volves computing the posterior probability density function of
a model state given prior probabilities and observation likeli-
hoods (Kalnay 2003). Much previous DA research focuses on
improving the structure of the former through ensemble- or
hybrid-based methods that can diagnose flow-dependent
background error correlations (Whitaker and Hamill 2002;
Wang et al. 2007, 2008a,b, 2009, 2013; Buehner et al. 2010;
Johnson et al. 2015). Despite the background and observation
error statistics playing an equally important role, relatively fewer
studies explore potential improvements when estimating the ob-
servation error covariance R. Much of this research gap is due to
the prior assumption that conventional observation sets feature
observation error statistics that change little in time or space and
thus can be represented by a Gaussian-distributed, constant er-
ror variance (Fowler and Van Leeuwen 2013).

Observation errors primarily consist of three components
(Fowler and Van Leeuwen 2013): systematic errors (biases),

instrument errors, and representation errors. Systematic er-
rors, if nonnegligible, should be treated before DA through
bias correction schemes. Instrument errors represent random
observation noise that is also typically small. Finally, repre-
sentation errors occur due to mismatches between the ob-
served and modeled variable (Janjić et al. 2018). These can
include errors associated with the observation operator (e.g.,
errors in a radiative transfer model), or due to the observation
sampling a different scale than the model state. The latter can
occur either when the observation samples finer-scale features
than can be resolved in the coarser model grid box, or when
the model has a higher resolution than the observation
(Janjić et al. 2018). Given their relation to the atmospheric
state, representation errors are sometimes referred to as
“flow-dependent” observation errors (Minamide and Zhang
2017). Remote sensing instruments such as satellite or ground-
based profilers are known to feature large flow-dependent
components to their observation error statistics (Turner and
Löhnert 2014; Fielding and Janiskova 2018).

Recently, novel remote sensing instruments have become
increasingly common for assimilation in operational systems
across the globe (e.g., Geer et al. 2018). While such instru-
ments can be highly beneficial in improving numerical weatherCorresponding author: Samuel K. Degelia, sdegelia@ou.edu
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forecasts (Hu et al. 2019; Degelia et al. 2019; Chipilski et al.
2020), their observation error statistics are known to differ sig-
nificantly from conventional datasets. For example, Degelia
et al. (2020, hereafter DWS20) find that assimilating ground-
based remote sensing data collected by the atmospheric emitted
radiance interferometer (AERI; Feltz et al. 2003) can improve
forecasts of nocturnal convection initiation (CI) through better
analyses of midlevel moisture advection. However, DWS20 also
show that using a static error inflation method across the entire
network of AERIs can lead to some profiling sites featuring
underestimated error variances and other sites featuring overes-
timated error variances. Assimilating data from the sites with
underestimated error variances are then shown to weaken mid-
level moisture advection and degrade subsequent forecasts of
nocturnal convection initiation (CI). Turner and Löhnert
(2014) also show that error variances for AERIs nearly double
in cloudy scenarios. Despite the strong variation in these error
statistics, most operational DA systems assume a constant
(static) R that does not vary in time or location (Bormann et al.
2016). As such, it has become clear that novel methods are
needed to estimate R for remote sensing datasets (Minamide
and Zhang 2017; Fielding and Janiskova 2018; Fielding and
Stiller 2019).

Ideally, methods for estimating R should account for both
instrument and representation errors assuming that systematic
errors are removed prior to DA. Most commonly, this is
achieved by inflating known instrument errors in scenarios
where representation errors are large. For example, Geer and
Bauer (2011) adaptively inflate observation error variances for
cloud-top observations based on an empirical function of bright-
ness temperature. Minamide and Zhang (2017) apply a similar
method for convective-scale applications, but only apply the er-
ror inflation when the difference between the observed and sim-
ulated brightness temperature (i.e., the innovation) is large. This
method is shown to reduce analysis errors by limiting the use of
large observation increments near clouds where representation
errors are large. However, these methods are unique to satellite
observations and have not been evaluated for other remote sens-
ing datasets such as ground-based profilers.

In addition to adaptively inflating observation error var-
iances to account for representation errors, direct estima-
tion of R is possible using a method originally derived in
Desroziers et al. (2005, hereafter D05). The D05 method
uses observation-space diagnostics, including the innovation
and analysis residuals, to compute an estimate of R that in-
cludes contributions from instrument and representation errors
(Hodyss and Nichols 2015; Hodyss and Satterfield 2017). The
D05 method has an advantage of being applicable to any obser-
vation type and has recently been shown to be beneficial even
at the convective scale (e.g., Lange and Janjić 2016; Waller et al.
2016b,c; Cordoba et al. 2017; Waller et al. 2019). However, the
D05 formulation features an expectation operator that requires
a large sample of observations to produce an accurate estimate
of R. As such, previous applications typically collect many ob-
servations to compute statistically robust but temporally cons-
tant observation errors (e.g., Weston et al. 2014; Bormann
et al. 2016; Campbell et al. 2017; Waller et al. 2019). While
this compromise removes the ability to diagnose time-

dependent observation errors, the D05 method can still be
individually calculated at each observation site to estimate
location-dependent observation error statistics. Like the infla-
tion methods described previously, the D05 method has also
yet to be evaluated for ground-based remote sensing profilers.

To determine how to optimally assign observation errors for
ground-based remote sensing profilers during convective-scale
DA, we propose and evaluate three methods for estimating
the observation error variance (diagonal of R). These methods
are applied for the AERI given that this instrument is known
to feature variable performance statistics depending on the
meteorological condition (Turner and Löhnert 2014; Turner
and Blumberg 2019). Two methods are based on inflating in-
strument errors to account for representation errors following
Degelia et al. (2019). The final method applies the D05 diagnos-
tic to directly estimate the full observation error variance R.
Finally, we also compare each method when assimilating AERI
observations for a nocturnal MCS observed during the Plains
Elevated Convection at Night (PECAN; Geerts et al. 2017) field
campaign. Given that this study is among the first work to evalu-
ate the impact of estimating observation error variances for
ground-based remote sensing profilers, a case study allows us to
perform detailed analyses that trace modifications to the error
statistics through the DA and forecast periods and better under-
stand the impacts to the individual convective ingredients.

The outline of this paper is as follows: section 2 presents a
general overview of the methods used to estimate the observation
error variances. System configuration, description of our specific
implementation of each method, and details of the 15 July noc-
turnal MCS are discussed in section 3. Attributes of the obser-
vation error statistics diagnosed by each method are presented
in section 4. The convective-scale impacts of assimilating obser-
vations using these error profiles are detailed in section 5, and
the impacts on the DA cycling are discussed in section 6.
Finally, a discussion of results is found in section 7.

2. Overview of methods for estimating observation
error statistics

This study compares the impact of assimilating AERI data
using novel methods to estimate observation error statistics on
convective-scale forecasts. These remote sensing instruments
retrieve simultaneous profiles of temperature and water vapor
mixing ratio up to 3 km above ground level (AGL) every
5–15 min. Given that error statistics for AERI retrievals vary in
different atmospheric parameters including clouds and precip-
itable water vapor (Turner and Löhnert 2014; Turner and
Blumberg 2019), observation error statistics for these data likely
cannot be represented by a constant error variance or static
inflation methods. The following is a general overview of the
methods evaluated in this study. A description of our specific
implementation for each method is then included in section 3.

a. Inflation of retrieval error variances from AERIoe

Degelia et al. (2019, hereafter DWS19) introduce a method
for assimilating AERI observations by statically inflating re-
trieval error variances generated by the AERI optimal estima-
tion retrieval algorithm (AERIoe; Turner and Löhnert 2014).
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AERIoe outputs unique retrieval error statistics for each ob-
serving time that contain both instrument and forward opera-
tor errors but that need to be further inflated to account for
residual errors. DWS19 account for these residual errors using
the difference between the full error variance profiles used
for assimilating rawinsondes in the Gridpoint Statistical Inter-
polation software (GSI; s2

Sf) and rawinsonde instrument error
variances (s2

Si; provided by Vaisala 2017), following:

s2
Pf 5 s2

Pi 1 a(s2
Sf 2 s2

Si), (1)

where a is a unitless, tunable parameter that controls the
amount of inflation, s2

Pi is the retrieval error variance profile
and s2

Pf is the final observation error variance profile assigned
during DA. Given that the error correlations for the AERIoe
retrievals increase with height and feature different structures for
temperature and moisture (Turner and Löhnert 2014), DWS19
select separate, vertically increasing values of a (Table 1).

Though the initial observation error variances s2
Pi are

unique for each observing time, the DWS19 additive inflation
[second term on RHS of Eq. (1)] tends to be larger than s2

Pi
such that Eq. (1) produces primarily static error statistics with
little variance between observing times. By comparing profiles
of sPi to RMS differences from collocated rawinsondes
(a proxy of the true observation error statistics), we find that
this static inflation method produces a reasonable shape and
magnitude for the mean uncertainties but greatly underesti-
mates their variability (Fig. 1). Upper-level moisture observa-
tions often differ from rawinsonde observations by 0.5–4 g kg21,
while the observation error variances diagnosed using Eq. (1)
only range from 1.8 to 2.2 g kg21 (Fig. 1b). As such, the DWS19
inflation method can sometimes cause upper-level observations
to be underweighted (overestimated error variances) or over-
weighted (underestimated error variances), leading to subopti-
mal observation increments. DWS20 further illustrate that the
underestimated observation error variances for AERI retrievals
can degrade convective forecasts when these observations are
assimilated.

To better estimate the true observation error statistics and
prevent underestimated error variances, we modify the AERIoe
inflation technique using the effective vertical resolution pro-
file for the retrieval (g). AERIoe outputs a unique profile of g
for each observing time and site. Contrary to traditional uses
of the term “resolution,” g represents the vertical smoothing

applied to the retrieval such that larger values indicate
smoother profiles. We refer to Turner and Löhnert (2014)
for the derivation of within AERIoe. Following this modifi-
cation, the error inflation becomes

s2
Pf 5 s2

Pi 1 bg(s2
Sf 2 s2

Si), (2)

where b represents a similar tunable parameter to a but now
has units of per kilometer (km21). The AERIoe vertical

TABLE 1. List of experiments, a description of the method used to estimate their observation error variances, and values for the
tunable parameters in each equation.

Experiment Description of method Tunable parameter values

NOAERI } (no AERI observations assimilated) }

AERIOE Initial observation error variances obtained from AERIoe retrieval
and statically inflated following Eq. (1)

aT linearly increases from 0 at the surface
to 4 at 3 km AGL; aQ linearly increases
from 0 at the surface to 1 at 3 km AGL

AERIOE_VRES Initial observation error variances obtained from AERIoe retrieval
and adaptively inflated using retrieval effective resolution in Eq. (2)

bT 5 1.3 km21, bQ 5 0.2 km21

DESROZIERS Observation error variances computed a priori using observation-space
diagnostics in Eq. (8). Unique error variances computed for each
site. Residuals include all DA cycles simulated in DWS20.

C 5 1.25

FIG. 1. RMS differences between AERI retrievals and collocated
rawinsonde launches for all retrievals assimilated in DWS20
(black). The error bars in black represent one standard deviation
of the absolute differences between the retrievals and rawinsondes.
The RMS error for rawinsondes has also been subtracted from the
black curve. Profiles are only included in the computation if a ra-
winsonde and AERI retrieval are available at the same site within
a 615-min window. Also shown in red are the mean and standard
deviation of sPf [Eq. (1)] assigned for the same retrievals using the
AERIoe method described in section 2. The mean differences are
computed by interpolating each AERI retrieval and rawinsonde
onto a standard vertical grid with 25-hPa spacing.
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smoothing typically increases with height, resulting in a simi-
lar effect to the vertically increasing inflation in Eq. (1). As
such, we do not require b to increase with height as with a in
Eq. (1).

Whereas the static method in Eq. (1) equally inflates
the observation error variances, Eq. (2) adaptively inflates
the errors given that g varies for each site and observing time.
Specifically, the modified inflation method estimates larger ob-
servation errors when the AERIoe retrieval smooths through
certain features. For example, this method often inflates the
error variances more in the shallow layer below cloud base,
where Turner and Blumberg (2019) note that the AERI ef-
fective resolution becomes large due to problems separating
cloud emission from atmospheric emission. An example of
this issue is shown for a PECAN case in Fig. 2 where the
AERI vertical resolution rapidly grows through a layer be-
ginning ;500 m below cloud base after 1100 UTC. While
sPi increases by a factor of 5 relative to the surface (Fig. 2b),
g instead increases by a factor of 20 throughout the same
layer (Fig. 2c). This indicates considerable smoothing in the
observations that is not fully accounted for by the retrieval
error statistics. Thus, applying the modified error inflation
in Eq. (2) can adaptively inflate s2

Pi to account for such
problems.

b. Desroziers et al. (2005) diagnostic

In addition to inflating the error statistics retrieved by AERIoe,
we also evaluate the impact of directly estimating observation
error statistics using observation-space diagnostics (Tandeo et al.

2020). The most common method for this follows from D05 who
derive an estimate of R as a relationship between the innovation
[dob 5 yo 2 H(xb)] and analysis residual [doa 5 yo 2 H(xa)].
Here, yo is the observation vector, and H(xb) and H(xa) are
the background and analysis vectors in observation space.
Assuming that observation and background errors are uncor-
related and that the innovation and analysis residuals are un-
biased, D05 show that

R̃ 5 E[doa(doa)T], (3)

where R̃ approximates the true R. Because R̃ contains infor-
mation about the model departure from the observation, it
should ideally contain most components of the observation
error statistics including representation errors (Hodyss and
Nichols 2015; Hodyss and Satterfield 2017). The D05 diagnos-
tic is often referred to as a posterior “consistency check” on
the assigned observation uncertainties given its requirement
for an existing analysis vector. Many studies highlight limita-
tions of the D05 diagnostic (e.g., Ménard et al. 2009; Ménard
2016; Waller et al. 2016a, 2017) including that a large sample
of observations are required to apply the expectation opera-
tor in Eq. (3). Additionally, various studies note that R̃ is only
correct if the assigned background and observation error co-
variances used during DA are correct. While we have no way
to verify R̃ without a method to estimate representation er-
rors, we note that Ménard (2016) find that the diagnostic can
still provide useful information even if the assumed statistics
are not exact.

FIG. 2. Example of AERIoe moisture retrievals collected at FP4 between 0600 and 2000 UTC
23 Jun. Included are the (a) moisture observations (g kg21), (b) observation error standard
deviations produced by AERIoe [sPi in Eqs. (1) and (2); g kg21], and (c) retrieval effective
resolution profiles (km). Also overlaid on each panel is the cloud base height (km) indicated by
a collocated lidar or ceilometer (white).
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3. Experiment design

a. Description of cycled DA and forecast system

All experiments described herein use the same multiscale
DA and forecast system described in DWS20 (Fig. 3). The cy-
cled system consists of two components: a GSI-based EnKF
(Johnson et al. 2015; Wang and Wang 2017) and version 3.7.1
of WRF-ARW (Skamarock et al. 2008). During DA, the GSI-
based EnKF uses observations (yo) to update a prior estimate
of the model state (xb) into an analysis (xa). For this study, we
apply the ensemble square root filter (EnSRF; Whitaker and
Hamill 2002) version of the EnKF wherein observations are
serially assimilated to update the mean state following:

xa 5 xb 1 K(yo 2 Hxb ), (4)

K 5 PbHT(HPbHT 1 R)21: (5)

Here, K represents the Kalman gain, H is the linearized obser-
vation operator performed by GSI, and Pb is the background

error covariance. Unlike static DA methods such as 3DVar,
the EnKF samples a flow-dependent Pb from ensemble fore-
casts. To update the ensemble member perturbations (given
by prime symbols), EnSRF computes a modified Kalman gain
(K̃) following:

x′a 5 x′b 2 K̃Hx′b, (6)

K̃ 5 1 1

�������������������
R

HPbHT 1 R

( )√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
21

K: (7)

We note that the EnSRF is a serial filter in that each observa-
tion is assimilated sequentially. As such, R and HPbHT reduce
to scalars in Eq. (7). This prevents the EnSRF from accounting
for observation error correlations. As such, the error methods
described in the next section are designed to only compute ob-
servation error variances instead of the fullRmatrix. Additional
DA configuration settings, along with the WRF parameteriza-
tion schemes, are shown in Table 2 following DWS20. We note

FIG. 3. Overview of experimental design including (a) domain configuration for the outer
(d01, 12 km) and inner (d02, 4 km) assimilation domains. The inner assimilation domain is also
used as the forecast domain. The locations of each AERI platform assimilated here are also
overlaid. (b) Flowchart for the cycled DA, including the four 3-h assimilation cycles on d01, the
six 15-min assimilation cycles on d02, and the 7-h forecast period.
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that while covariance localization can limit the quality of R̃ esti-
mated by Eq. (3), Waller et al. (2017) show that the observation
error variances, which are the only terms modified throughout
this study, will not be affected by this problem.

We now summarize the cycling configuration for each set of
simulations. The cycled DA begins by generating initial and
lateral boundary conditions for 40 ensemble members at 1600
UTC 14 July consisting of 20 members from the GEFS (Wei
et al. 2008) and 20 members from the Short-Range Ensemble
Forecast System (SREF; Du et al. 2014). Next, conventional
observations and AERI retrievals are assimilated on a 12-km
outer domain (d01 in Fig. 3) at 3-h intervals until 0400 UTC
15 July. The North American Mesoscale Data Assimilation
System (NDAS) supplies the conventional observations con-
taining quality controlled rawinsonde, surface, ship, and buoy
data. We also preprocess AERI retrievals using the methods
described at length in DWS19 and DWS20 but do not apply a
bias correction scheme (see discussion section). After DA
on d01, we then downscale to an inner, 4-km domain (d02 in
Fig. 3) during which conventional observations, AERI retriev-
als, and radar data are assimilated at 15-min intervals until
0530 UTC 15 July. The radar data, including radar reflectivity
and radial velocity collected fromWSR-88D sites, are prepro-
cessed using WDSS-II (Lakshmanan et al. 2007). Finally, we
initialize 7-h forecasts from the first 10 ensemble members
following DWS20. Unlike DWS20 who analyze small-scale
nocturnal CI events on a 1-km grid, this study focuses on
a larger-scale MCS that spans from southern Nebraska to
northern Oklahoma. As such, we only perform forecasts on
the 4-km domain to limit computational costs.

b. Specific implementation of methods for computing
observation error variances

1) INFLATION OF RETRIEVAL ERROR VARIANCES

FROM AERIOE

Equations (1) and (2) are directly computed for each DA
cycle using the retrieval error variances and vertical resolution
data produced by the AERIoe retrieval algorithm. Both the

static and adaptive inflation methods feature a tunable para-
meter (a, b) to control the magnitude of the error inflation
(summarized in Table 1). To be consistent with previous stud-
ies, we use the values of a derived in DWS19. These values
are selected by varying a in intervals of 0.25 for a nocturnal
CI event on 25 June 2015. DWS19 then select the a, which re-
sults in the highest fractions skill score (FSS; Roberts and
Lean 2008) for a 6-h forecast of composite reflectivity. For the
parameter b used in the adaptive inflation method [Eq. (2)],
we select values that result in the lowest mean absolute differ-
ence between observation error variances estimated by the
static and adaptive methods for the 25 June case. As such, this
modification increases the profile-to-profile variation of the
uncertainties in the adaptive method while only slightly
changing the mean values (primarily at the top of the profile).

2) DESROZIERS ET AL. (2005) DIAGNOSTIC

We also compute observation error variances for AERI re-
trievals using the Desroziers et al. (2005) diagnostic in Eq. (3).
For our implementation of this method, we first separate the
residuals doa and dob to compute a unique solution for each
AERI observing site. Next, we bin each residual pair into a
25-hPa vertical profile. Since the EnKF used here cannot ac-
count for the full observation error covariance, we only com-
pute the observation error variances. We apply the following
from D05 that corresponds to Eq. (3) but only for the mean
diagonal elements of R̃:

s2
Pf 5 C∑

n

i51

(yoi 2 Hxai )(yoi 2 Hxbi )
n

: (8)

Here, n represents the number of residual pairs per bin, and
(yoi 2 Hxbi ) and (yoi 2 Hxai ) represent background and analysis
residuals for individual observations in the bin, respectively.
The above equation is calculated in each bin to build a verti-
cal profile of s2

Pf. Although ignoring the error correlations is
necessary for our DA system, previous studies show this as-
sumption can result in underestimated error statistics and

TABLE 2. List of WRF-ARW and EnKF settings used for all simulations. We note that a different microphysical parameterization
scheme is used for the DA and forecast periods and that no cumulus parameterization is utilized on the 4-km assimilation domain
(d02 in Fig. 3). The two values shown for the localization radii represent the parameters used for the outer (12 km, d01) and
intermediate (4 km, d02) assimilation domains, respectively.

Parameterization or DA setting Scheme name or value

Microphysical parameterization (DA) WSM6 (Hong and Lim 2006)
Microphysical parameterization (forecast) Lin et al. (1983)
PBL parameterization MYNN (Nakanishi and Niino 2006)
Longwave radiation parameterization RRTMG (Iacono et al. 2008)
Shortwave radiation parameterization Goddard (Tao et al. 2003)
LSM Noah (Ek et al. 2003)
Cumulus parameterization Grell and Freitas (2013)
Localization radii (conventional observations,

PECAN rawinsondes, AERIs)
Horizontal (km): 700, 200 Vertical [ln(P/Pref)]: 1.1, 0.55

Localization radii (Doppler lidars, radar wind profilers) Horizontal (km): 700, 200 Vertical [ln(P/Pref)]: 0.20, 0.20
Localization radii (radar observations) Horizontal (km): }, 20 Vertical [ln(P/Pref)]: }, 0.55
Inflation factor (prior) 1.15, decreasing to 1.03 at model top
Inflation factor (posterior) 0.95 of prior spread
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degrade analyses (e.g., Bormann et al. 2016). These issues can
be at least partially alleviated by applying a multiplicative in-
flation to the error variances (Stewart et al. 2014; Bormann
et al. 2016), indicated by C in the Eq. (8). To be consistent
with the AERIoe inflation methods and select the optimal ob-
servation error variance magnitudes for the D05 method, we
also tune C using the same, 25 June 2015 case used to deter-
mine a. By varying C in intervals of 0.25, we find that C5 1.25
produces the highest values of FSS for our implementation of
the D05 method.

As described previously, Eqs. (3) and (8) require many ob-
servation samples over which to apply the expectation opera-
tor. For the method applied here, these samples are obtained
from the 13 cases presented in DWS20. We use the ensemble
mean background and analysis residuals from each cycle to be
consistent with the original derivation in D05. While multiple
AERI retrievals were often assimilated during a single DA
cycle in DWS20, we only select the retrieval closest to the cen-
ter of the observation window so that only the most represen-
tative residuals are included. For this implementation, we
note that we also compute unique error variances for both the
outer and inner domains (Fig. 3) given that representation

errors are highly related to model grid spacing (Fielding and
Stiller 2019). The total number of samples differs per site and
vertical level but averages to n 5 35 retrievals on the outer
domain and n5 46 retrievals on the inner domain.

c. Description of experiments

To evaluate the convective-scale impact of these novel
methods, we design a set of experiments that differ only in
their procedures used to assign the observation error statistics
when assimilating AERI retrievals (Table 1). First, we per-
form a reference experiment where no AERI data are assimi-
lated (NOAERI) to ensure that the above methods do not
overinflate the observation error variances and result in little
impact on the analysis. Next, we perform two experiments that
inflate the error variances provided by AERIoe, including using
the static inflation from Eq. (1) (AERIOE), and the modifica-
tion in Eq. (2) wherein the error variances are adaptively in-
flated using the vertical resolution profile (AERIOE_VRES).
Finally, we also apply a method that directly estimates the
observation error variance using the Desroziers diagnostic
(DESROZIERS). We hypothesize that these two novel
methods (AERIOE_VRES and DESROZIERS) are likely

FIG. 4. RAP analyses for the 15 Jul 2015 nocturnal MCS event including composite reflectivity (dBZ; bottom color
scale), 850-hPa winds (m s21; right color scale), and 850-hPa water vapor mixing ratio (g kg21; green contours). The
location of the AERI platforms assimilated here are overlaid in each panel and labeled in (a).
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more impactful in certain situations. For example, we hypothe-
size that AERIOE_VRES can improve analysis results by in-
flating error statistics below cloud base where the retrieval
often becomes very smooth (large representation errors).
DESROZIERS could instead limit observation impacts in sit-
uations where the retrieval smooths through an inversion or
shallow moist layer, resulting in large representation errors
and a large innovation.

d. Case description

We evaluate each experiment for the nocturnal MCS ob-
served during PECAN on 15 July 2015 (IOP30). Grasmick
et al. (2018) provide a detailed overview of this event which
we summarize here. On the late afternoon of 14 July, a cluster
of disorganized convective cells developed in eastern Colo-
rado along a group of shortwave troughs embedded within
an upper-level ridge. Additional convection initiated along
outflow boundaries produced by these storms shortly after
sunset, eventually growing upscale into the MCS of interest
(Fig. 4a). By 0700 UTC, this MCS began to develop the tradi-
tional leading-line, trailing stratiform structure with the stron-
gest precipitation located along the northern half of the MCS
(Fig. 4b). An additional band of convection, oriented primar-
ily east–west, developed just north of the main convective line
near the Nebraska border at 0800 UTC (Fig. 4c). This second-
ary convective line will be discussed later throughout the pa-
per. The main MCS continued to propagate eastward until
decaying around 1200 UTC (Fig. 4d). Though not considered
a severe MCS (Grasmick et al. 2018), the NWS reported three
heavy wind events (30 m s21 or 60 kt) and one large hail event
during its evolution.

Throughout this event, scientists collected a dense dataset
of profiling and in situ observations from PECAN Integrated
Sounding Arrays (PISAs). AERI instruments were located at
five of the fixed PISAs (FP) and one mobile PISA (MP) site
(gray dots in Fig. 4). Most AERIs collected data continuously
throughout the experiment, though the MP site (SPARC)
only operated between 0000 and 0500 UTC 15 July. DWS20
assimilate these AERI data in their systematic evaluation of
the impact of remote sensing profilers for nocturnal convec-
tive forecasts. Though their baseline forecasts perform well,
they find a reduction in skill when assimilating AERI data, es-
pecially between 0700 and 0900 UTC when the MCS was
most organized and when the second, east–west convective
band developed to the north (Fig. 4c). DWS20 hypothesize
that the forecast degradations found in their study could par-
tially be a result of underestimated observation error varian-
ces for some AERI platforms. Given these findings, we select
the 15 July MCS to evaluate the impact of the novel methods
proposed here.

4. Results: Diagnosed observation error statistics

To examine the structure of the observation error statistics
diagnosed by each method, we first present time-averaged
profiles of observation error standard deviation computed
over all DA cycles (Fig. 5). We note that the plots in Figs. 5b
and 5d represent the standard deviation across the distribution

of sPf and should not be confused with the error standard de-
viation itself.

In general, each method estimates similar sPf magnitudes
for midlevel (;900–750 hPa) temperature and moisture

FIG. 5. (a),(c) Time-averaged and (b),(d) standard deviation
profiles of the sPf for (top) temperature (8C) and (bottom) water
vapor mixing ratio (g kg21). Each profile is computed using obser-
vation error profiles from all sites. When computing the statistics,
each profile is interpolated onto a standard vertical grid with 25-hPa
spacing. Also overlaid in (b) and (d) are the one standard deviation
profiles of the absolute differences between the retrievals and raw-
insondes assimilated in DWS20 (black error bars in Fig. 1).
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observations with larger differences occurring at the bottom
and top of the retrievals. These differences primarily occur
between the two main experiment sets (i.e., AERIOE and
AERIOE_VRES versus DESROZIERS). When averaged
across all sites, the methods which inflate the AERI error sta-
tistics produce vertically increasing sPf profiles up to 700 hPa
for both temperature (Fig. 5a) and moisture (Fig. 5c). Con-
versely, the DESROZIERS method shows a local maximum
in sPf near the surface that decreases through the planetary
boundary layer (PBL) before increasing again around 700 hPa.
This result indicates that the innovation and analysis residuals
are typically larger near the surface compared to aloft, poten-
tially due to local circulations sampled by AERIs that cannot
be resolved in the 12- and 4-km simulations (i.e., larger repre-
sentation errors).

The adaptive inflation extension in AERIOE_VRES follows
a generally similar shape to its static counterpart. AERIOE

and AERIOE_VRES both estimate similar sPf profiles below
750 hPa due to b in Eq. (2) being tuned to produce the lowest
RMSD between the two experiments. However, sPf for
AERIOE_VRES becomes larger than AERIOE in the upper

FIG. 6. Neighborhood ensemble probabilities (NEP) for each experiment and valid at (a)–(d) 0730 UTC, (e)–(h) 0830 UTC, and (i)–(l)
1015 UTC 15 Jul. The probabilities are computed for compositive reflectivity exceeding 30 dBZ. Also overlaid in black are the 30-dBZ
contours of observed composite reflectivity from MRMS. See text for a description of the circled regions.

TABLE 3. Fractions skill score (FSS) values computed for
accumulated precipitation exceeding 2.54 and 6.35 mm h21.
Each score is computed across the entire forecast domain (d02
in Fig. 3) using a 16-km neighborhood and then averaged over
the 7-h forecast period. The verifying precipitation observations
are obtained from MRMS.

Experiment FSS (2.54 mm h21) FSS (6.35 mm h21)

NOAERI 0.485 0.536
AERIOE 0.472 0.596
AERIOE_VRES 0.496 0.613
DESROZIERS 0.496 0.605
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FIG. 7. Simulated composite reflectivity from member 1 of the AERIOE, AERIOE_VRES, and DESROZIERS experiments valid at
(a)–(c) 0630, (d)–(f) 0730, and (g)–(i) 0830 UTC. Also overlaid in black are the 30-dBZ contours of observed composite reflectivity from
MRMS. See text for a description of the circled regions.
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portions of the profile, especially for temperature (Fig. 5a). This
increase partially results from g in Eq. (2) often increasing expo-
nentially with height compared to the linearly increasing inflation
in Eq. (1). Additionally, the presence of clouds often contributes
to increased g, resulting in larger sPf in AERIOE_VRES com-
pared to AERIOE.

A larger impact of the two new methods evaluated here
(AERIOE_VRES and DESROZIERS) results from the in-
creased temporal variability of the observation error statistics
at all sites (Figs. 5b,d). This increased variability occurs for
both moisture and temperature errors and better matches the
observed error statistics (Fig. 1 and black lines in Figs. 5b,d).
AERIOE_VRES features more variability than AERIOE
throughout most of the profile due to the addition of g in
Eq. (2) that changes for each retrieval. AERIOE_VRES
also features much larger variability in sPf near the top of
the profile, likely due to the presence of clouds increasing
the vertical resolution of some retrievals. Except near the sur-
face, DESROZIERS also features larger variations in sPf

compared to AERIOE. The DESROZIERS method also esti-
mates much more site-to-site variability due to its relationship
to the background and analysis states (not shown). These find-
ings suggest that advanced methods can better capture larger
error variations wherein the observation uncertainty increases
in specific meteorological conditions or at specific locations.

5. Impact of observation error statistics on the prediction
of the 15 July 2015 MCS

Next, we compare the forecast impacts of assimilating
AERI data when using different methods for assigning the
observation error variances. We primarily analyze the evolu-
tion of the 15 July MCS through neighborhood ensemble
probabilities (NEP; Schwartz and Sobash 2017) and FSS com-
puted over a 16-km neighborhood. We note that the interpre-
tation of these results does not change when verifying over

different neighborhoods or forecast products (e.g., reflectivity
or precipitation).

Without assimilating any AERI data, an MCS develops in the
correct location with maximum probabilities located along the
main convective line and in the trailing stratiform region in
northwestern Kansas (Fig. 6a). Although NOAERI correctly
predicts the early structure of the MCS, a large region of spuri-
ous precipitation develops to the north of the primary convective
line in Nebraska (dashed circle in Fig. 6a). This spurious convec-
tion, which we discuss at length throughout the rest of this paper,
eventually expands into a large area of precipitation and results
in an apparent northern shift of the MCS relative to observa-
tions. Additionally, we note that NOAERI fails to maintain the
MCS in Kansas such that ensemble probabilities along the pri-
mary convective line weaken to ;60% by 1030 UTC (forecast
hour 4; Fig. 6i).

Assimilating the AERI data using the static inflation method
(AERIOE; Figs. 6b,f,j) slightly degrades the forecast quality dur-
ing forecast hours 0–3. Primarily, the observation error statistics in
AERIOE reduce the convective probabilities within the strati-
form region of the MCS by ;30% (Figs. 6a,b). AERIOE also
shifts, but does not suppress, much of the spurious convection fur-
ther south such that it connects with the main convective line of
the MCS (Fig. 6b). This shift causes the MCS to orient increas-
ingly north–south and again extend too far north inAERIOE. By
1015 UTC (Figs. 6i,j), AERIOE eventually begins to indicate a
better forecast than NOAERI due to improvements in both the
spurious precipitation (reduced probabilities by;20%) and bet-
ter maintenance of the convective line in the MCS (increased
probabilities by;20%).However, the early forecast degradations
within the trailing stratiform region, alongwith little improvement
in the spurious precipitation, contribute to AERIOE producing a
lower mean FSS than NOAERI for the weaker precipitation
threshold (Table 3).

While the static inflation method slightly degrades the fore-
cast relative to the baseline simulation, its adaptive extension

FIG. 8. Simulated 850-hPa winds (m s21; shading and barbs), horizontal convergence (contoured in black every 1526 s21),
and composite reflectivity (30-dBZ contours in red) from member 1 of the AERIOE, AERIOE_VRES, and DESROZIERS ex-
periments. Each plot is valid at 0730 UTC 15 Jul. The half barbs represent wind speeds of 2.5 m s21, and the full barbs represent
wind speeds of 5 m s21. The yellow circle in (c) indicates convergence band that results from northerly winds converging with
outflow.
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(AERIOE_VRES; Figs. 6c,g,k) improves upon many of
the abovementioned problems. Primarily, we find that
AERIOE_VRES results in reduced probabilities for the
spurious precipitation across most of southern Nebraska
(Figs. 6c,g). AERIOE_VRES also better maintains the trail-
ing stratiform region of the MCS as indicated by increased
probabilities in northwestern Kansas from 0730 to 0830 UTC
(Figs. 6c,g). These results contribute to an overall more skillful
forecast in AERIOE_VRES compared to NOAERI and
AERIOE (Table 3) and suggest that some of the forecast deg-
radations discussed in DWS20 can be alleviated by adaptively
inflating the observation error statistics for ground-based pro-
filers. However, the forecast in AERIOE_VRES eventually
converges with AERIOE after 1030 UTC (not shown), indicat-
ing that the impact from modifying the observation error statis-
tics only lasts;4 h.

In addition to inflating the instrument errors, we also
evaluate using the D05 method to directly estimate observa-
tion error variances based on observation-space statistics.
The DESROZIERS experiment (Figs. 6d,h,l) similarly im-
proves upon many of the issues discussed above. During the
early forecast period, DESROZIERS simulates less precipita-
tion in central Nebraska to the point where almost no spurious
convection is seen at 0730 UTC (Fig. 6d). DESROZIERS also

enhances probabilities within the trailing stratiform region to
.90% compared to both AERIOE and AERIOE_VRES
(Figs. 6d,h). However, DESROZIERS still develops low prob-
abilities for unobserved convection along the Nebraska–Kansas
border at later lead times that leads to a slight misorientation of
the MCS at later lead times (Fig. 6h). This additional convection
that develops at 0830 UTC will be discussed further in the next
section.

Table 3 summarizes this NEP analysis and reveals that de-
spite featuring larger mean error variances throughout much
of the profile, the AERIOE_VRES and DESROZIERS
experiments now show higher skill and thus more impact
from assimilating the thermodynamic retrievals compared to
AERIOE. This result is primarily related to improved sup-
pression of spurious convection, with a small contribution
stemming from better maintenance of the MCS at 0830 UTC.
AERIOE_VRES and DESROZIERS produce similar FSS
values, with AERIOE_VRES performing slightly better for
higher precipitation rates.

Analysis of spurious precipitation

Given that modifications to the spurious precipitation
in Nebraska are responsible for much of the skill differ-
ences between the experiments, we perform an additional

FIG. 9. Simulated pre-convective thermodynamic fields from member 1 of the AERIOE, AERIOE_VRES, and DESROZIERS experi-
ments, including (a)–(c) 850-hPa dewpoint temperatures (8C; shading) and winds (m s21; barbs) and (d)–(f) most unstable CAPE (J kg21;
shading) and lifted parcel levels for the most unstable parcels (m AGL; black contours). Each plot is valid at 0730 UTC 15 Jul. In (a)–(c),
the half barbs represent wind speeds of 2.5 m s21, and the full barbs represent wind speeds of 5 m s21. The white circles represent regions
corresponding to the spurious convection discussed in the text.
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analysis to determine what mechanisms lead to this convec-
tion. We compare member 1 from each experiment except for
NOAERI, as this member is representative of the impacts
described in the previous section. Primarily, member 1 from
AERIOE generates a north–south-oriented line of unobserved

convection (circles in Figs. 7a,d) whereas AERIOE_VRES and
DESROZIERS produce a small amount of east–west-oriented
convection that is observed at earlier lead times (circles in
Figs. 7b,c,e,f). Additionally, member 1 from DESROZIERS
generates a strong, northwest–southeast-oriented band of

FIG. 10. Ensemble mean differences of 850-hPa water vapor mixing ratio (g kg21) for (a),(d),(g) AERIOE minus NOAERI;
(b),(e),(h) AERIOE_VRES minus AERIOE; and (c),(f),(i) DESROZIERS minus AERIOE. The black contours indicate the
ensemble mean 850-hPa water vapor mixing ratio simulated by AERIOE. Also overlaid are the innovations for AERI moisture re-
trievals closest to 850 hPa and assimilated at each cycle using the same color scale. The red regions correspond to positive moisture in-
crements in AERIOE that enhance spurious convection in southern Nebraska, and the purple regions correspond to negative moisture
increments in AERIOE that degrade the trailing stratiform region of the 15 Jul MCS. In (g)–(i), a mean difference value corresponding
to the dashed rectangles are annotated.
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convection along the northern edge of the MCS between
0730 and 0830 UTC (Figs. 7f,i). While this secondary con-
vection simulated by DESROZIERS is displaced further
north than observed, it still closely resembles the observed
secondary CI event shown in Fig. 4c. AERIOE_VRES also
generates some convection along the northern boundary of
the MCS but of weaker magnitude (Fig. 7h). This secondary
CI event in DESROZIERS occurs due to northwesterly
winds converging with outflow associated with the MCS
(yellow circle in Fig. 8c). Due to the large amount of spuri-
ous convection inhibiting the northwesterly winds in south-
western Nebraska (Fig. 8a), AERIOE does not simulate the
convergence and associated convective band. As such, we
hypothesize that the improved structure of the MCS in
AERIOE_VRES and DESROZIERS also results from im-
proved suppression of the spurious convection.

We find that the spurious convection develops within a
north–south-oriented midlevel moist layer that extends into
southern Nebraska in AERIOE (Fig. 9a). This moisture bulge
results in enhanced midlevel instability, as denoted by air par-
cels at 1 km AGL featuring ;3000 J kg21 of convective avail-
able potential energy (CAPE; Fig. 9c). In addition to the
enhanced instability, this region also features low-level con-
vergence due to the strong westerly winds associated with the
MCS outflow (Fig. 9a). The spurious convection of interest is
primarily supported by this enhanced instability and conver-
gence. Although the convergence ahead of the MCS is pre-
dicted similarly in AERIOE_VRES and DESROZIERS,
these novel experiments instead produce a weaker moist layer
that does not extend as far north (Figs. 9b,c). We note that a

similar moisture bulge is seen in RAP analyses at 0500 UTC
(Fig. 4a) but does not extend as far north as is simulated in
AERIOE (Fig. 9a), further supporting the simulations shown
in AERIOE_VRES and DESROZIERS. As a result of the
lower moisture, AERIOE_VRES and especially DESROZIERS
predict less most unstable CAPE (MUCAPE) in southern
Nebraska, leading to a suppression of the spurious convection
relative to AERIOE (Fig. 9d).

6. Impact of observation error statistics on DA cycling

To better understand why the novel methods evaluated
here improve the convective forecast, we use this final section
of results to trace modifications to the convective ingredients
into individual profiles of sPf. We present difference and en-
semble correlation plots to evaluate the impacts specifically
for the spurious convection and the trailing stratiform region.
Note that the differences in Fig. 10, apart from the first col-
umn, are plotted relative to AERIOE as that technique has
been applied for previous studies (DWS19; DWS20) and can
be treated as a baseline method for estimating observation er-
ror variances.

a. Impacts of observation error statistics on spurious
precipitation

The difference plots reveal two moisture surges during
DA that contribute to the northern extension of the elevated
moist layer and the spurious convection simulated in AERIOE.
The first of these surges occurs at 0100 UTC just east of FP3
when AERIOE increases the 850-hPa mixing ratio by;3 g kg21

FIG. 11. Ensemble mean soundings computed over the (a) dashed red box and (b) dashed purple box in Figs. 10g–10i
at 0530 UTC 15 Jul. The solid lines indicate temperature while the dashed lines indicate dewpoint temperature. Also
annotated on each sounding are the most unstable CAPE (J kg21; first metric in brackets) and convective inhibition
(CIN) associated with the most unstable parcel (J kg21; second metric in brackets).
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relative to NOAERI (red circle in Fig. 10a). This region of
enhanced moisture is advected to the northwest between
0100 and 0530 UTC. At 0400 UTC, a second region of en-
hanced moisture develops in AERIOE, again just east of
FP3 (Fig. 10d). These two moisture surges merge during later
DA cycles, eventually producing a convective-scale region of
enhanced moisture compared to NOAERI (11.03 g kg21, red
box in Fig. 10g). The final location of this positive moisture in-
crement corresponds to the enhanced MUCAPE shown in
Figs. 9a and 9d.

Assimilating the retrievals in the two novel experiments in-
creasingly reduces the impact of both moisture surges (see
negative values in the red boxes of Figs. 10h,i). The moistening
is more reduced in DESROZIERS (22.21 g kg21) and least re-
duced in AERIOE_VRES (21.52 g kg21). We note that in gen-
eral, the difference fields for (AERIOE_VRES 2 AERIOE)
and (DESROZIERS 2 AERIOE) feature the same spatial
structure as (AERIOE 2 NOAERI) except for the opposite
sign, indicating that these two novel methods primarily
modify the magnitude of the observation impacts instead
of their shape. We also summarize the moisture impacts
by computing average soundings during the final DA cycle
(Fig. 11a). Here, each experiment reduces MUCAPE and
enhances the most unstable convective inhibition (MUCIN)
compared to AERIOE. Again, the impacts for DESROZ-
IERS are larger than those in AERIOE_VRES. Given the
modifications to the convective indices, these relative differ-
ences likely explain why AERIOE_VRES and DESROZ-
IERS reduce the amount of spurious convection compared
to AERIOE.

Next, we perform an ensemble correlation analysis to de-
termine which retrievals contribute most to the positive mois-
ture increments in AERIOE. While both moisture surges
occur near FP3, Fig. 12 reveals that the impacts are likely re-
lated to AERI observations assimilated from FP4 (Fig. 12a;
0100 UTC surge) and FP6 (Fig. 12b; 0400 UTC surge). Both
sites feature large, positive innovations (dob . 3g kg21), mean-
ing that assimilating these data results in strong, positive incre-
ments in regions of positive correlation and strong, negative
increments in regions of negative correlation. Though the analy-
sis increments are a superposition of all sites and observation
levels assimilated, the correlation structures at FP4 and FP6
roughly correspond to the moisture surges highlighted above
(yellow circles in Fig. 12).

Finally, we present the AERI retrievals assimilated at
FP4 and FP6 to better understand how the observation er-
ror statistics relate to these moisture impacts (Figs. 13 and
14). We note that the background and analysis profiles are
only shown for AERIOE as the corresponding profiles for
other experiments do not significantly differ. As with Fig. 12,
both retrievals indicate positive innovations above 900 hPa
due to the very moist retrievals relative to the background.
AERIOE estimates the lowest sPf at both sites (Fig. 13c) and
thus assigns the largest weight to the moist retrievals during
DA. AERIOE_VRES features only slightly larger sPf than
AERIOE due to a marginally larger vertical resolution
compared to the median (Figs. 13b, 14b). Despite this, the
small error increases in AERIOE_VRES appear to have

been significant enough to reduce the impact of the moistening.
Conversely, DESROZIERS produces much larger sPf between
900 and 850 hPa at both sites. The observation standard devia-
tion peaks at 2.9 g kg21 at FP4 (Fig. 13c) and 3.5 g kg21 at FP6
(Fig. 14c), indicating systematic peaks in the innovation and
analysis residuals for the midlevel retrievals at FP4 and FP6.
These larger values of sPf reduce the weight assigned to the
moist AERI retrievals and thus support the reduction in spuri-
ous convection. Apart from the improved forecast results when
assimilating AERIs using the larger uncertainties, the increased
sPf are further supported by a collocated rawinsonde launched
at FP6 that indicates a large moisture error in the AERI re-
trievals (Fig. 14a).

b. Impacts of observation error statistics on trailing
stratiform precipitation

Finally, we also analyze the impacts of the observation
error statistics on the low-level moisture near the trailing
stratiform region (purple regions in Figs. 10g–i). Al-
though the small NEP increases in this region do not im-
pact the skill as much as the improvements to the spurious

FIG. 12. Background ensemble correlations between 850-hPa wa-
ter vapor mixing ratio at an AERI platform and the rest of the do-
main. The plots are computed at (a) FP4 valid at 0100 UTC and
(b) FP6 valid at 0400 UTC. The location of the FP4 and FP6
sites are annotated with the green dots, and the mean values of
their 850-hPa moisture innovations are overlaid (g kg21). Also
overlaid in black contours are the analysis increments for the
AERIOE experiment. See text for a description of the yellow
circles.
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precipitation, each method still shows a measurable bene-
fit compared to the original static inflation method ap-
plied in AERIOE.

In general, we find that assimilating the AERI retrievals in
the baseline AERIOE experiment produces moderate drying
in northwestern Kansas, especially during the 0100 UTC cycle
near FP5 (Fig. 10a) and the 0415 UTC cycle near SPARC
(not shown). These moisture impacts are mostly stationary
and eventually lead to moderate drying underneath the ongo-
ing MCS during the final DA cycle (20.89 g kg21, Fig. 11k).
The moisture impacts are also illustrated by computing an av-
erage sounding that reveals reduced dewpoint temperatures
below 600 hPa and 200 J kg21 less of MUCAPE in AERIOE
compared to NOAERI (Fig. 11b). The reduced instability
likely explains why convection in the trailing stratiform re-
gion decays in AERIOE compared to other experiments.
Conversely, assigning sPf using the other two methods re-
duces the impact of this drying (Figs. 10h,i) and corre-
spondingly increases the MUCAPE (Fig. 11b). As before,
the relative magnitude of these differences is larger in

DESROZIERS (Fig. 10i) compared to AERIOE_VRES
(Fig. 10h).

We do not present a correlation analysis for this section, as
the moisture impacts near the trailing stratiform region occur
directly above FP5 and SPARC (Figs. 15 and 16). Unlike the
previous section which details moist biases, these AERI ob-
servations instead feature dry layers that are not supported by
collocated rawinsondes. Specifically, the 0100 UTC retrieval
at FP5 is too dry between 875 and 750 hPa (Fig. 15a), while
the 0415 UTC retrieval at SPARC is too dry above 850 hPa
(Fig. 16a). At FP5, AERIOE and AERIOE_VRES estimate
similar, lower sPf and thus assign the heaviest weight to these
dry retrievals (Fig. 15c). Conversely, DESROZIERS again es-
timates a midlevel peak in sPf that reduces the impact of these
dry retrievals (Fig. 15c). At SPARC, the dry error occurs just
below cloud base, indicating that it could potentially be re-
lated to the emission issues detailed in Turner and Blumberg
(2019). The issue is represented in the vertical resolution pro-
file above 850 hPa (Fig. 16b) and as such, sPf from SPARC is
correspondingly inflated in AERIOE_VRES (Fig. 16c).

FIG. 13. (a) AERI water vapor mixing ratio (g kg21) observations assimilated at FP4 during the 0100 UTC cycle, along with correspond-
ing background and analysis profiles from the AERIOE experiment. (b) Median effective vertical resolution (km) profiles output by the
AERIoe retrieval at the same time. The black profile indicates the median computed over all PECAN retrievals, while the brown profile
indicates the median computed only over the profiles assimilated during this cycle. (c) Observation error standard deviation (g kg21) pro-
files for these data assigned in each experiment.
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7. Discussion

This study is among the first work to propose and evaluate
the impact of using novel methods to estimate observation er-
ror statistics for ground-based thermodynamic profilers in a
convective-scale DA system. Using high-frequency retrievals
collected by AERIs, we compare two methods to a static in-
flation technique applied in earlier studies. These two novel
methods include one that adaptively inflates retrieval error
statistics, and another that directly estimates the full observa-
tion error variance, including representation components,
based on the D05 diagnostic. Each of these methods is shown
to produce more variant error statistics that better match the
wide distribution of true observation error statistics. The
adaptive inflation method primarily produces larger error var-
iances below cloud base, thereby accounting for retrieval is-
sues described in Turner and Blumberg (2019). The direct
estimation method based on the D05 diagnostic instead pro-
duces larger error variances throughout most of the retrieval
profile.

When implementing these methods for an MCS observed
during PECAN, we find that a static error inflation applied in

previous studies can reduce forecast skill compared to not as-
similating the profiling data at all. Specifically, the static error
inflation results in reduced probabilities within the trailing
stratiform region due to large weights assigned to retrievals
that are too dry. When assimilating AERI data using the
adaptive inflation method, these dry retrievals are deweighted
such that we find improved probabilities within the trailing
stratiform region and better suppression of spurious convec-
tion developing near the MCS. These results suggest that
constant observation error variances or static inflation meth-
ods are likely insufficient when assimilating remote sensing
data at convective scales.

Similar to the adaptive inflation results, we also find that
the direct estimation of observation error variances from the
D05 method performs better than the static inflation method
applied in DWS19 and DWS20. The experiment that applied
the D05 method performed similarly to the adaptive inflation
method in terms forecast quality for the nocturnal MCS with
only a slight decrease in skill for higher precipitation thresh-
olds. However, while the inflation methods are designed spe-
cifically for AERI retrievals, the D05 method can instead be
generalized for any observation type. Additionally, the D05

FIG. 14. As in Fig. 13, but for the FP6 moisture observations assimilated at 0400 UTC. Also overlaid now are the cloud base height indi-
cated by a collocated lidar or ceilometer (dashed cyan line), and a corresponding moisture profile collected by a collocated rawinsonde
[purple line in (a)].
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method can account for additional sources of uncertainty that
cannot be easily represented by empirical inflation methods
(e.g., large residuals and corresponding error variances near
sharp gradients). As such, we recommend that future studies
further explore the capabilities of using the D05 method for
convective-scale applications.

The improvements shown here can also be interpreted as il-
lustrating the benefits of accounting for flow-dependent ob-
servation error statistics. For example, the adaptive inflation
method can account for additional observation uncertainty in
the presence of clouds. The D05 method, despite estimating
temporally constant error statistics, can instead account for in-
creased uncertainty through various features such as an inver-
sion. While static methods might perform well for coarser,
synoptic applications, our analysis of the 15 July 2015 case
highlights how observation error variances can become under-
estimated at the convective scale, and that these deficiencies
can be propagated throughout the assimilation and forecast
period to degrade precipitation forecasts. This result suggests
that adaptive or flow-dependent methods are needed to ac-
count for observing times that feature larger errors (i.e., in-
creased representation errors in certain conditions) and that
such methods can greatly improve the impact of assimilating

various datasets. As an initial effort to demonstrate and to un-
derstand the two proposed methods, a single case study is
adopted. However, given that the components of R vary con-
siderably by case and observing type, we recommend evaluat-
ing these methods for more cases and using additional remote
sensing instruments including satellite-based profilers.

Future studies should also evaluate the potential impact of
observation biases when using the D05 method. As men-
tioned in section 2, the D05 method assumes that the innova-
tion and analysis residuals are unbiased. However, separating
observation and model biases can be challenging (Chandra-
mouli et al. 2021) especially given that the mean error varian-
ces for AERIoe vary significantly in the presence of clouds
(Turner and Löhnert 2014). Therefore, as with other pub-
lished studies (e.g., Satterfield et al. 2017), we cannot elimi-
nate the influence of bias on the diagnosed error statistics.
These untreated biases could result in overestimated observa-
tion error variances which could also lead to larger apparent
impacts when applying the D05 method. We recommend that
future studies either explore optimal bias correction proce-
dures for AERIoe retrievals or apply methods that modify
the D05 method to account for biases (e.g., Waller et al.
2017).

FIG. 15. As in Fig. 14, but for the FP5 moisture observations assimilated at 0100 UTC.
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Finally, a large advantage of the D05 method results from
its ability to diagnose a full observation error covariance ma-
trix including observation error correlations. Though horizon-
tal error correlations (i.e., site to site correlations) are likely
small for profiling instruments, vertical correlations can be
large (Turner and Löhnert 2014). Thus, our future work will
also adopt other DA methods such as EnVar (Wang et al.
2013; Wang and Lei 2014) to evaluate the impact of assimilat-
ing the full R diagnosed by the D05 method instead of only in-
flating the observation error variances.
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